High Temple Workshop 24 2-5 February 2004 Sacramento, California # New Material Transition From an OEM Perspective Content related to Accelerated Insertion of Materials – Composites (AIM-C) which is jointly accomplished by a Boeing Led Team and the U.S. Government under the guidance of NAVAIR. Work funded by DARPA/DSO (Dr. Leo Christodoulou) and administered by NAVAIR through TIA N00421-01-3-0098. #### John M. Griffith Technical Fellow Phantom Works The Boeing Company St. Louis, Missouri (314) 234-5968 # **Agenda** In the composites industry, there is significant, widespread confusion and frustration relating to material transition onto products. This presentation goes into several areas pertaining to an increased understanding from a multiple discipline perspective. - Background - Maturity - Disciplines - Conformance - Summary ### **Background** Transition means putting it onto an application... ...Application Acceptance is Through Certification With Stepwise Risk Reduction ## **Background** #### Designer Data/Information Needs for Application Certification #### **Structural** - Strength and Stiffness - Weight - Service Environment - Temperature - Moisture - Acoustic - Chemical - Fatigue and Corrosion Resistant - Loads & Allowables #### **Manufacturing** - Recurring Cost, Cycle Time, and Quality - Use Common Mfg. Equipment and Tooling - Process Control - Inspectable - Machinable - Automatable - Impact on Assembly #### **Supportability** - O&S Cost and Readiness - Damage Tolerance - Inspectable on Aircraft - Repairable - Maintainable - Accessibility - Depaint/Repaint - Reseal - Corrosion Removal - Logistical Impact #### **Material & Processes** - Development Cost - Feasible Processing Temperature and Pressure - Process Limitations - Safety/Environmental Impact - Useful Product Forms - Raw Material Cost - Availability - Consistency #### **Miscellaneous** - Observables - EMI/Lightning Strike - Supplier Base - Applications History - Certification Agency & Status - USN - USAF - ARMY - FAA Risk in Each Area is Dependent Upon Application's Criticality and Material's Likelihood of Failure ### Technology Readiness Level (TRL) For Maturity ### **Designer Perspective** #### Technology Readiness Level System - 10. Disposal - 9. Production - 8. Flight Test - 7. Ground Test - 6. Component Test - 5. Design Maturation (Subcomponents) - 4. Preliminary Design (Stable Mat'l & Process + Elements) - 3. Proof of Concept Prototype - 2. Concept Definition - 1. Concept Exploration #### **PROS** - Looks at maturity from a designer/system viewpoint - Broken down into specific activity areas - Is geared towards application products and systems for readiness #### **CONS** - Does not take into account different discipline perspectives - Does not address detailed areas/items at each readiness level Based on NASA, Air Force and ONR Technology Maturity Level Approaches ### Readiness Levels From a Technologist Viewpoint ### **Technologist Perspectives** #### **Readiness Level** - 9. Industry Std - 8. Production - 7. Qualified Mat'l/Process/Mfg - 6. Pre-Production - 5. Pilot Production - 4. Lab/Prototype Production - 3. Beaker/Bench Product - 2. Theoretical/Beaker Product - 1. Concept Exploration #### **PROS** - Looks at maturity from a technologist viewpoint - Broken down into specific activity areas - Is geared towards materials, processing and manufacturing for readiness #### **CONS** - Is not tied/connected to TRL's from the system or application viewpoint - Does not take into account different discipline perspectives - Does not address detailed areas/items at each readiness level #### Certification - Application Requirements/Needs Demonstrated - Stepwise Risk Reduction (Building Block Approach) - Performance Characteristics for Primary/Secondary/ Air Loaded Structures #### Qualification - Materials and Processing are Stable - Material and Processing Specifications #### Transition Customer Acceptance for an Application or Applications #### Connections/Correlations for Readiness Levels Technologist Perspectives Designer Perspective **Technology** Readiness Level Readiness Level 10. Disposal 9. Industry Std 9. Production 8. Production System 8. Flight Test 7. Ground Test 6. Component Test **Technologist** Activity 5. Design Maturation Description (Subcomponents) 4. Preliminary Design ← 7. Qualified Mat'l/Process **Final Capabilities** (Stable Mat'l & Process + Elements) 3. Proof of Concept **Expanded Capabilities Prototype** 2. Concept Definition ← 5. Pilot Production **Preliminary Capabilities** 1. Concept Exploration 4. Lab/Prototype Production **Preliminary** 3. Beaker/Bench Product Investigations, Activity Steps Moving to 2. Theoretical/Beaker Product Research. Certification Development 1. Concept Exploration Activity Steps Moving to Qualification # **Multiple Disciplines** | TRL | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |----------------------------|--|---|--|---|--|---|--|--|---|---|---| | Certification | Qualification Plan
Assessment | Certification
Elements
Documented | Certification Plan
Documented | Certification Plan
Approved | Elements | Subcomponent
Testing | Full Scale
Component
Testing | Full Scale
Airframe Tests | Flight Test | Production
Approval | Disposal Plan
Approval | | Application/
Design | Technology
Readiness Review | System
Requirements
Review | Project Planning
Review | Preliminary
Design Review | Critical Design
Review | Full Scale Test
Readiness Review | Ground Test
Certification
Review | Flight Test
Certification
Review | Production
Readiness Review | Production
Support | Recycle or
Dispose | | Assembly/
Quality | Preliminary
Assembly Concept
Assessed | Assembly Concept | Assembly Plan
Definition | Key Assembly
Detail Definitions | Key Assembly
Details Tested | Subcomponents
Assembled | Components
Assembled | Airframe
Assembled | Flight Vehicles
Assembled | Production | Disassembly for
Disposal | | Survivability | General
Requirements
Assessed | Requirements
Definition | Concept Definition | Proof of Concept | Preliminary
Design Data and
Guidelines | Design Allowables
and Guidelines
Defined | Critical Details
Testing | Ground Test | Flight Test | Production
Support | Operations
Support &
Disposal | | Fabrication/
Quality | Fabrication
Capability
Demonstrated | Unfeatured-Panel
Fabrication | Feature Based
Generic
Small/Subscale
Parts Fabricated | Property-Fab
Relationships
Tested/ Target
Application Pilot
Production of
Generic Full Size
Parts | Process Specs/
Effects of Fab
Variations Tested/
Elements Fab'd/
Production
Representative
Parts Fab'd | Subcomponents
Fab'd | Full Scale
Components
Fabricated | EMD Fabrication | Low Rate Initial
Production (LRIP) | Production | Recycle or
Disposal | | Supportability | Repair
Requirements
Assessed | Repair
Items/Areas
Identified | Repair Materials &
Processes
Identified | Repair Materials &
Processes
Documented | Fab Repairs
Identified | Fab Repair Trials/
Subcomponent
Repairs | Component
Repairs | Production
Repairs Identified | Flight Qualified
Repairs
Documented | Repair-Replace
Decisions | Support for
Recycle or
Disposal
Decisions | | Structures & Durability | Preliminary Properties- Characteristics Assessed | Preliminary
Properties-
Characteristics | Initial Properties | Design To
Properties
Developed | Preliminary
Design Allowables | Final Design
Allowables | Allowables for
Critical Design
Features | Production and
Test Support | Certified
Allowables | Flight Tracking/
Production
Support/ Fleet
Support | Retirement for
Cause | | Materials | Lab-Prototype
Materials | Lab-Prototype
Materials
Reproducibile | Pilot Production
Materials | Pre-Production
Materials | Production
Sacleability
Validated | EMD Material
Supplied | EMD Material
Supplied | EMD Material
Supplied | LRIP Material
Supplied | Production
Material Supplied | Support for
Recycle or
Disposal
Decisions | | Cost/Schedule/
Benefits | Cost Benefit
Elements ID'd &
Assessed | Cost Benefit
Elements ID'd &
Projected | ROM Cost Benefit
Analysis | Cost Benefit
Analysis Reflect
Size Lessons
Learned | Cost Benefit Analysis Reflect Element and Production Representative Part Lessons Learned | Cost Benefit
Analysis Reflect
Subcomponent
Fab & Assembly
Lessons Learned | Cost Benefit
Analysis Reflect
Component Fab &
Assembly Lessons
Learned | Cost Benefit
Analysis Reflect
EMD Lessons
Learned | Cost Benefit
Analysis Reflect
LRIP Lessons
Learned | Cost Benefit
Analysis Reflect
Production
Lessons Learned | Cost Benefit
Analysis Reflect
Disposal Lessons
Learned | | Intellectual
Rights | Concept
Protection Plan
Developed | Protection Plan
Documentation | Patent Disclosure
Filed | Proprietary Rights
Agreements | Data Sharing
Rights | Vendor
Agreements | Material and
Fabrication
Contracts | Production Rate
Contracts | Vendor Requal
Agreements | Post-Production
Agreements | Liability
Termination
Agreements | ...Multiple Disciplines Have Different Perspectives for Technical Maturity Level Exit Criteria ## **Multiple Disciplines** ### Structures and Durability Breakout Exit Criteria Vary According to Application | / ippiioation | | | | | | | |---|---|--|--|--|--|--| | In-plane Ultimate Strength Unnotched Compression In-plane Ultimate Strength | Bond/Interlaminar Joint
Strength - Final Failure | | | | | | | Unnotched Tension Ultimate Strength Combined Loads | Bolted Joint -
Bearing/Bypass | | | | | | | In-plane Ultimate Strength Open Hole Compression | Maximum Deflection | | | | | | | In-plane Ultimate Strength Open Hole Tension | | | | | | | | Ultimate Strength Open
Hole, Combined Loads | Residual Strength BVID,
Compression | | | | | | | Stability - Global/Panel | Residual Strength
Penetrations, Tension | | | | | | | | Residual Strength Penetrations, Compression | | | | | | | Stability - Skin Buckling | Residual Strength
Penetrations, Combined
Loads | | | | | | | Stability - Stringer
Crippling | Local Stability - Face
wrinkling (Sandwich
Only) | | | | | | | Stability - Stringer
Column Buckling | Local Stability - Intracell
Buckling (Sandwich Only) | | | | | | | Bond/Interlaminar Joint
Strength - Damage
Initiation | Local Stability - Shear
Crimping (Sandwich
Only) | | | | | | #### Exit Criteria Tends to Vary According to OEM and Customer Durability/Life Microcracking Durability/Life Delamination Growth Durability/Life - Stiffness Degradation Durability/Life - Bearing Strength Degradation **Material Mechanical** Properties - Primary (Tension, Compression, Shear, Bearing By-pass) **Material Mechanical** Properties - Secondary (CTE, Poisson's, Fracture Toughness,) **Material Mechanical** Properties - Other () Material Durability/Life Properties -Environmental Impact on Properties Material Durability/Life Properties - Impact Resistance and Fatigue Material Durability/Life Properties - Solvent Resistance ## **Multiple Disciplines** # Materials, Processing and Producibility Breakout With Critical quality functions/characteristics demonstrated Indicest material and/or | MATERIAL | Critical functions/ characteristics of material/
ingredients demonstrated. New material
within state-of-the-art. Indirect material
requirements identified. Facility
requirements identified. | |-------------|---| | PROCESSES | Critical functions/ characteristics of processing demonstrated. New process operates within state-of-the-art. Facility requirements identified. Indirect materials or process steps identified. | | EQUIPMENT | Critical functions/ characteristics of individual equipment pieces demonstrated. Indirect materials and facility requirements identified. Equipment accuracy requirements defined. | | TOOLING | Critical functions/ characteristics of individual tooling pieces demonstrated. Indirect materials and facility requirements identified. Tooling accuracy requirements defined. | | VARIABILITY | Variabilities roughly characterized. | | QUALITY - IN-
PROCESS | Critical quality functions/characteristics
demonstrated. Indirect material and/or
process steps identified. Facility
requirements identified. Defects identified | | | | |----------------------------|---|--|--|--| | QUALITY - FINAL
PRODUCT | Critical quality functions/characteristics demonstrated. Indirect material and/or process steps identified. Facility requirements identified. Defects identified. | | | | | APPLICATION
MATURITY | Critical functions/characteristics
demonstrated; physical phenomena
understood. | | | | | COST/BENEFIT
ANALYSIS | Key costs/benfits have had a preliminary assessment for quantification. | | | | | SUPPORTABILITY | Critical repair functions and characteristics demonstrated. | | | | | REGULATORY | Regulatory issues understood. | | | | | Intellectual
Property | Reduction to practice in progress. Strategy to issue patents or preserve technology as trade secret accepted. | | | | Combines Both Objective and Subjective Areas - Includes Property and Characteristic Measurements - Includes Production Readiness Assessments - Each Individual Material and Processing/ Producibility Step Needs to be Addressed ### Conformance Varies According to Application, Maturity, Discipline and Customer To Meet Requirements Strength, Modulus, Strain to Failure, Poissons 1 & 2 Layup 1 Longitudinal Open H (Quasi) # **Summary** - Multiple Discipline Perspective Integrates Requirements and Conformance to Requirements - Multiple Discipline Conformance Activities Covers The Spectrum of All Areas and Items for Material Insertion - Certification and Qualification is Very Complex - Primary Emphasis is Risk Reduction Relative to Applications ## **Ending** "The best information on a new material are the first things heard about it. It only goes downhill from there." Quote Attributed to Flake Campbell Jr.